Environmental stresses can alleviate the average deleterious effect of mutations
نویسندگان
چکیده
BACKGROUND Fundamental questions in evolutionary genetics, including the possible advantage of sexual reproduction, depend critically on the effects of deleterious mutations on fitness. Limited existing experimental evidence suggests that, on average, such effects tend to be aggravated under environmental stresses, consistent with the perception that stress diminishes the organism's ability to tolerate deleterious mutations. Here, we ask whether there are also stresses with the opposite influence, under which the organism becomes more tolerant to mutations. RESULTS We developed a technique, based on bioluminescence, which allows accurate automated measurements of bacterial growth rates at very low cell densities. Using this system, we measured growth rates of Escherichia coli mutants under a diverse set of environmental stresses. In contrast to the perception that stress always reduces the organism's ability to tolerate mutations, our measurements identified stresses that do the opposite - that is, despite decreasing wild-type growth, they alleviate, on average, the effect of deleterious mutations. CONCLUSIONS Our results show a qualitative difference between various environmental stresses ranging from alleviation to aggravation of the average effect of mutations. We further show how the existence of stresses that are biased towards alleviation of the effects of mutations may imply the existence of average epistatic interactions between mutations. The results thus offer a connection between the two main factors controlling the effects of deleterious mutations: environmental conditions and epistatic interactions.
منابع مشابه
Environmental stress and the effects of mutation
Mutations are the ultimate fuel for evolution, but most mutations have a negative effect on fitness. It has been widely accepted that these deleterious fitness effects are, on average, magnified in stressful environments. Recent results suggest that the effects of deleterious mutations can, instead, sometimes be ameliorated in stressful environments.
متن کاملInteractions between stressful environment and gene deletions alleviate the expected average loss of fitness in yeast.
The conjecture that the deleterious effects of mutations are amplified by stress or interaction with one another remains unsatisfactorily tested. It is now possible to reapproach this problem systematically by using genomic collections of mutants and applying stress-inducing conditions with a well-recognized impact on metabolism. We measured the maximum growth rate of single- and double-gene de...
متن کاملFate of a mutation in a fluctuating environment.
Natural environments are never truly constant, but the evolutionary implications of temporally varying selection pressures remain poorly understood. Here we investigate how the fate of a new mutation in a fluctuating environment depends on the dynamics of environmental variation and on the selective pressures in each condition. We find that even when a mutation experiences many environmental ep...
متن کاملStress, sex and evolution
genetics and you are bound to find phrases such as ‘stress reveals genetic variation’. The implication is that while many stresses have a slight effect on an ‘average’ organism, if the organism has a mutation then the stress can have greater impact. For bacteria this would be revealed in reduced growth. At the very least you would expect growth of mutated organisms to be inhibited by stress to ...
متن کاملThe fate of a mutation in a fluctuating environment
Natural environments are never truly constant, but the evolutionary implications of temporally varying selection pressures remain poorly understood. Here we investigate how the fate of a new mutation in a fluctuating environment depends on the dynamics of environmental variation and on the selective pressures in each condition. We find that even when a mutation experiences many environmental ep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Biology
دوره 2 شماره
صفحات -
تاریخ انتشار 2003